From Monometallic to Bimetallic Systems: Improving Glycerol Liquid Phase Catalytic Oxidation
Tuesday, June 30, 2020
10:15 AM CDT
Elżbieta Skrzyńska-Ćwiąkalska, Jean-Sébastien Girardon, Soraya Zaid, Ayman El Roz, Mickaël Capron
Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide
From over two decades, scientists are striving to improve glycerol liquid phase oxidation process. A lot of valuable articles were published in the field, discussing among others: the influence of the active phase and of its preparation method, the influence of the initial reaction conditions (i.e., pH of the reaction medium, temperature, oxidant partial pressure…), the issue of impurities in raw glycerol. Such efforts have been made to find the most efficient, environment friendly and economical method for valorizing biodiesel industry-derived glycerol into added-value molecules. To this respect, we will highlight how deeply we could improve the liquid phase glycerol oxidation process, from the use of conventional monometallic (Au, Pt, Pd and Ag) catalysts operating at high temperatures under oxygen pressure to our most recent findings on bimetallic systems, which are active at room temperature, atmospheric pressure and using air as an oxidant.