Category: Stormwater Symposium

393133 - A combined field-modeling study on urban soil hydrology and implications for passive green infrastructure

Tuesday, Jun 5
8:30 AM – 5:30 PM

Green infrastructure (GI) represents a broad set of stormwater control measures practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much GI presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative GI. In all cases of GI, infiltration and drainage processes are regulated by soil surface conditions and then the heterogeneous layering of subsoil horizons. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we were able to gain an understanding of the suitability of commonly-used prediction algorithms (e.g., USDA ROSETTA, USEPA National Stormwater Calculator) for predicting urban soil hydrology. We found that for the majority of sites evaluated, neither pedotransfer functions nor national soils datasets referenced in the Stormwater Calculator accurately represent urban hydrologic conditions. We next related actual soil horizon sequences with corresponding hydrologic data (compared to pre-urbanized reference soil pedons) to model the overall hydrologic impacts of urbanization (HYDRUS1D). We found that the different layering sequences in urbanized soils generate different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services. These results contribute to defining passive green infrastructure, and the extent to which it may feasibly and economically contribute, for example, to rendering ecosystem services and achieving compliance with Clean Water Act enforcement actions.

Co-Authors: Dustin Herrmann, Cincinnati, OH – US Environmental Protection Agency; William Shuster, Cincinnati, OH – US Environmental Protection Agency

Laura A. Schifman

Graduate Program Manager
Boston University
Cambridge, Massachusetts

I'm an interdisciplinary environmental scientist with a focus on hydrology, ecosystem services, contaminant fate and transport, and nonpoint source pollution. I am interested in how biological, chemical, and physical processes can be integrated into successfully planning the (re)development of the sustainable city model in both, emerging and existing cities. My emphasis lies in how green infrastructure and urban soils can act as a form of integrated water resources management that generates multiple ecosystem services, including flood management, public health through vector borne disease control, air and water quality improvements.