Moderated Poster

Poster, Podium & Video Sessions

MP23-04: Colorimetric, pH-Responsive Membranes Allow for Immediate, Real-Time and Reversible Urine Monitoring in a Multipart System for Detection of Changes Secondary to Urease-Producing Bacteria

Saturday, May 13
7:00 AM - 9:00 AM
Location: BCEC: Room 151

Presentation Authors: Cory French, Madeline Fuchs, Hammad Huda, Neal Patel*, Brandey Andersen, Kirk Ziegler, Victoria Bird, Gainesville, FL

Introduction: Within 4 weeks, 90% of long-term catheterized patients will develop bacteriuria, and 50% will experience encrustation and marked elevation of urine pH. Urease-producing bacteria have been linked to elevated urine pH, catheter-associated urinary tract infection (CAUTI), encrustation, and struvite renal calculi. We propose a method to monitor alkalinization of urine as part of a multimodal system which could play a role in prevention of catheter encrustation. Reversibility of the colorimetric membrane acts as a form of biofeedback to allow for modification of oral intake with acidifying agents and control urine pH to prevent encrustation.

Methods: To create a pH-sensitive, reversible colorimetric porous membrane with immediate detection of alkaline urine, high molecular weight polymer was solvated in organic solvent. A quaternary ammonium salt and indicator dye were then added for pH sensitivity and electrostatic retention of the dye. Addition of plasticizer followed to modify the membrane mechanical properties. This solvated mixture was stored under 4°C refrigeration until casting.

Results: The solvated membrane blend was drop cast onto the inside of catheter tubing for demonstration. Basic solution (pH 7.5 / NaOH) was passed through and a distinct and visible change of color to green (see Figure 1) was observed upon exposure. Dilute acidic solution was then passed through (pH 4 / H2CO3) and there was a rapid reversal (< 5 seconds) to original yellow color. The urinary pH range from 4.0 to 9.0 can be monitored by this system.

Conclusions: The clear colorimetric indication afforded by this membrane provides a robust system for the reversible detection of real-time changes in urine pH. As a component of a multipart system, this provides rapid biofeedback that allows for informed and directed intervention. This system may also assist in the detection of elevated urine pH secondary to urease-producing bacteria responsible for encrustation and recurrent struvite kidney stone formation.

Source Of Funding: This work is supported by the University of Florida Research Opportunity Seed Fund.

Send Email for Neal Patel


Assets

MP23-04: Colorimetric, pH-Responsive Membranes Allow for Immediate, Real-Time and Reversible Urine Monitoring in a Multipart System for Detection of Changes Secondary to Urease-Producing Bacteria



Attendees who have favorited this

Send Email for Colorimetric, pH-Responsive Membranes Allow for Immediate, Real-Time and Reversible Urine Monitoring in a Multipart System for Detection of Changes Secondary to Urease-Producing Bacteria