Hemangiomas and Other Vascular Lesions

Arin K. Greene, MD, MMSc

Department of Plastic and Oral Surgery
Vascular Anomalies Center
Boston Children’s Hospital

Professor of Surgery
Harvard Medical School

AAP Instructional Course
November 2018
Faculty Disclosure Information

In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial service(s) discussed in this CME activity.

I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.
Outline

• Introduction

• Classification

• Diagnosis and Treatment of Tumors

• Diagnosis and Treatment of Malformations

• Emerging Genetic Framework

• Case Examples

• Summary/Conclusions
Learning Objectives

(1) Comprehend biological classification and terminology

(2) Accurately diagnose major types of vascular anomalies

(3) Understand basic management
Vascular Anomalies

- ~4-5% population
- Psychosocial/functional morbidity
- Plastic surgeons (integument)
- Interdisciplinary centers
- Confusing field
 - Similar appearance
 - Imprecise terminology
- 71% papers “hemangioma” incorrect*

*Hassanein, et al. PRS 2011
Introduction
Confusing Appearance
Introduction

Confusing Terminology

<table>
<thead>
<tr>
<th>19th Century Term</th>
<th>Vascular Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Hemangioma”</td>
<td>All Types</td>
</tr>
<tr>
<td>“Capillary Hemangioma”</td>
<td>Kaposiform hemangioendothelioma, capillary malformation</td>
</tr>
<tr>
<td>“Strawberry Hemangioma”</td>
<td>Superficial hemangioma pyogenic granuloma,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>“Cavernous Hemangioma”</td>
<td>Deep hemangioma, venous malformation</td>
</tr>
<tr>
<td>“Port-Wine Stain”</td>
<td>Capillary malformation</td>
</tr>
<tr>
<td>“Lymphangioma”</td>
<td>Microcystic lymphatic malformation</td>
</tr>
<tr>
<td>“Cystic Hygroma”</td>
<td>Macrocystic lymphatic malformation</td>
</tr>
</tbody>
</table>
Introduction
Confusing Appearance and Terminology

Vascular Anomalies Center
Incorrect Referral Diagnosis (n=3937)

<table>
<thead>
<tr>
<th>Tumors</th>
<th>Malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.6% (345/1167)</td>
<td>54.4% (1507/2770)</td>
</tr>
<tr>
<td>IH</td>
<td>VM</td>
</tr>
<tr>
<td>22.5%</td>
<td>69.0%</td>
</tr>
<tr>
<td>KHE</td>
<td>LM</td>
</tr>
<tr>
<td>48.8%</td>
<td>30.7%</td>
</tr>
<tr>
<td>CH</td>
<td>AVM</td>
</tr>
<tr>
<td>91.0%</td>
<td>40.6%</td>
</tr>
<tr>
<td>PG</td>
<td>CM</td>
</tr>
<tr>
<td>0.0%</td>
<td>67.2%</td>
</tr>
</tbody>
</table>

2009 Literature
Incorrect use of ‘Hemangioma’ (n=320)

<table>
<thead>
<tr>
<th></th>
<th>Correct Management</th>
<th>Incorrect Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct Nomenclature</td>
<td>100.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Incorrect Nomenclature</td>
<td>79.4%</td>
<td>20.6%</td>
</tr>
</tbody>
</table>

n=105; *p=0.001 (Fisher’s Exact Test)

Hassanein, et al PRS 2011
Biological Classification

Clinical & Endothelial Characteristics

<table>
<thead>
<tr>
<th>Hemangiomas</th>
<th>Malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferating phase</td>
<td>Capillary</td>
</tr>
<tr>
<td>Involuting phase</td>
<td>Venous</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
</tr>
<tr>
<td></td>
<td>Lymphatic</td>
</tr>
<tr>
<td></td>
<td>Fistulae</td>
</tr>
</tbody>
</table>
Biological Classification

90% Diagnosed by History and Physical Examination

Infantile Hemangioma

Venous Malformation
"Cavernous Hemangioma"
<table>
<thead>
<tr>
<th>Tumors</th>
<th>Malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow-Flow</td>
</tr>
<tr>
<td>Hemangioma</td>
<td>Capillary</td>
</tr>
<tr>
<td>Hemangioendotheliomas</td>
<td>Lymphatic</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>Venous</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

International Society for Study of Vascular Anomalies (ISSVA) 1996
<table>
<thead>
<tr>
<th>TUMORS</th>
<th>MALFORMATIONS</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simple</td>
<td>Combined</td>
</tr>
<tr>
<td>Benign</td>
<td>Capillary</td>
<td>CVM</td>
</tr>
<tr>
<td>Infantile hemangioma</td>
<td>HHT</td>
<td>CLM</td>
</tr>
<tr>
<td>Congenital hemangioma</td>
<td>CMTC</td>
<td>LVM</td>
</tr>
<tr>
<td>Spindle-cell hemangioma</td>
<td>Fading stain</td>
<td>CLVM</td>
</tr>
<tr>
<td>Epithelioid hemangioma</td>
<td></td>
<td>CAVM</td>
</tr>
<tr>
<td>Pyogenic granuloma</td>
<td></td>
<td>CLAVM</td>
</tr>
<tr>
<td>Locally Aggressive</td>
<td>Lymphatic</td>
<td></td>
</tr>
<tr>
<td>KHE</td>
<td>Macrocystic</td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>Microcystic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLA, Gorham</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphedema</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td>Venous</td>
<td></td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>CMVM</td>
<td></td>
</tr>
<tr>
<td>Epithelioid hemangioendothelioma</td>
<td>Blue rubber bleb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arteriovenous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM-AVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AV Fistula</td>
<td></td>
</tr>
</tbody>
</table>
Vascular Anomalies Simplified
8 Types Comprise \(\sim 95\% \) of Lesions

<table>
<thead>
<tr>
<th>TUMORS ((n=4))</th>
<th>MALFORMATIONS ((n=4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile Hemangioma</td>
<td>Capillary</td>
</tr>
<tr>
<td>Congenital Hemangioma</td>
<td>Lymphatic</td>
</tr>
<tr>
<td>Kaposiform Hemangioendothelioma</td>
<td>Venous</td>
</tr>
<tr>
<td>Pyogenic Granuloma</td>
<td>Arteriovenous</td>
</tr>
</tbody>
</table>
Epidemiology of Referrals

General Population

- Hemangioma (~5.0%)
- Malformations (~0.5%)

Vascular Anomalies Center (n=5621)

<table>
<thead>
<tr>
<th>Tumors</th>
<th>Malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.2% (n=1976)</td>
<td>64.8% (n=3645)</td>
</tr>
<tr>
<td>Infantile Hemangioma</td>
<td>85.9%</td>
</tr>
<tr>
<td>Hemangioendotheliomas</td>
<td>7.8%</td>
</tr>
<tr>
<td>Congenital Hemangioma</td>
<td>5.4%</td>
</tr>
<tr>
<td>Pyogenic Granuloma</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vascular Tumors

- Infantile Hemangioma
- Congenital Hemangioma
- Kaposiform Hemangioendothelioma
- Pyogenic Granuloma
Infantile Hemangioma

- 4-5% Caucasians
- 2/3 head/neck, 30% multiple
- Female: male = 3:1
- Noted ~ 2 weeks of age
- *Proliferating phase*: birth-9 months (80% complete 5mo)
- *Involuting phase*: 1-4 years
Phenotypes of Infantile Hemangioma

- **Superficial**
- **Deep**
- **Multiple**
- **Midline**
- **Reticular**
- **PHACES**

Multiple (≥5)
- Small, < 5mm, dome-shaped
- 16% hepatic lesions (92% asymptomatic)
- US

Lumbosacral Midline
- Tethered cord
- US/MRI

Reticular
- Lower extremity
- Ulceration, anogenital/urinary anomalies

PHACES Association
- V distribution + anomaly
- 2.3% IH, 20% V1,2,3, MRI 8% stroke
- P posterior fossa (cerebellum)
- H hemangioma
- A arterial (coarctation, carotid, vertebral)
- C cardiac (PDA, septal defects)
- E eye (microphthalmia)
- S sternum (nonunion, raphe)
Infantile Hemangioma

Complications

Proliferating Phase (10%)
- Ulceration
- Distortion

Involuted Phase (50%)
- Fibro-adipose
- Excess Skin
- Scar
- Alopecia
- Telangiectasias

Obstruction

Destruction of Structures
Infantile Hemangioma
Management Proliferating Phase

Non-ProBLEMATIC (80%)
- No Ulceration (80%)
 - Observation
- Ulceration (20%)
 - Barrier Dressing (heals ~2 weeks)

Problematic (20%)
- Topical Timolol (40%)
- Kenalog Injection (40%)
- Prednisone Propranolol (20%)
- Resection (<1%)
 - Superficial <8 weeks
 - Localized <3cm
 - Diffuse >3cm
 - Failed Other Tx

Infantile Hemangioma
Topical Timolol

- 0.5% gel-forming solution
- 1 drop BID
- Superficial lesions
- Early <8 weeks
- Discontinue 10 months
Infantile Hemangioma
Corticosteroid Injection

- 1st line small, well localized
- ≤ 3 cm diameter
- ≤ 3 mg/kg per injection
- N=100 triamcinolone
- 100% response
 - 1/3 stabilize
 - 2/3 regress
- No systemic side effects
- 2% fat atrophy
Infantile Hemangioma
Systemic Pharmacotherapy if Diffuse (>3cm)

- Propranolol (2008)
 - First-line
 - 15% non-response
 - Late rebound
 - Hypoglycemia, seizure
 - Monitoring
 - ? Neurocognitive effects

- Prednisone (1967)
 - Second-line
 - 90% smaller, 10% stabilize
 - 15% temporary growth, cushingoid
 - No long term side-effects
 - Simple

Greene et al. PRS 2011
Infantile Hemangioma

Resection

Ulceration

Ulceration

Distortion
Infantile Hemangioma
Involuted Phase (Age 3-4)
Congenital Hemangioma

- Fully-grown at birth - no growth
- Male = female, solitary, 5cm
- Pink-purple, telangiectasias, halo
- H/N(43%), limb(45%), trunk(13%)
- GLUT-1 negative
- Rapidly involuting (RICH)
 - Involved by 14 months
 - Fat atrophy
- Non-involuting (NICH)
 - Treatment is excision
Congenital Hemangioma

Treatment

RICH
- Birth
- Atrophy
- Fat Grafting

NICH
Kaposiform Hemangioendothelioma (KHE)

- 50% birth, male=female, >5cm
- Red-purple, trunk/extremities
- Incomplete regression (2 years)
- Kasabach Merritt phenomenon (50%)
 - PLT (<25k), petechiae, bleeding
- Treatment
 - Sirolimus (oral)
 - Vincristine (IV)
 - Operative (rare)
Kaposiform Hemangioendothelioma (KHE)
Operative Treatment
Pyogenic Granuloma

- Mean onset 6 yrs (rare < 6 mo)
- 2/3 head and neck (central face #1)
- Small, 6 mm
- Rapid growth, bleeding
- Reticular dermis
- Recurrence shave, superficial cautery (~50%)
- Recurrence after excision, deep cautery (0%)
Vascular Malformations

Capillary

Venous

Lymphatic

Arteriovenous
Capillary Malformation (CM)

- Dilated capillary-venules dermis
- Fading stain (50% Caucasians)
 - Forehead (“angel kiss”)
 - Nuchal area (“stork bite”)
- CM (0.3% population)
 - Darken, overgrowth
- CMTC
 - Violaceous, net-like pattern
 - Extremity, asymmetry, ulceration
- Syndromes (Sturge-Weber, CM-AVM)
- Treatment: (1) laser, (2) resection
Capillary Malformation (CM)
Pulse-Dye Laser

- Lightens lesion
- Multiple treatments
- Early = better result
- Can darken over time

Courtesy of Marilyn Liang, MD
Capillary Malformation (CM) Operative Treatment

Overgrown Lip
Pyogenic Granuloma
Liposuction
Lymphatic Malformation (LM)

- Types
 - Macrocytic
 - Microcytic
 - Lymphedema
 - Generalized, Gorham

- Infection, bleeding, drainage, overgrowth

- Macrocytic
 - Sclerotherapy
 - +/- Resection

- Microcytic
 - Resection
 - Laser, RFA
 - Bleomycin
 - Sirolimus
Lymphatic Malformation
Macrocystic - Sclerotherapy
Lymphatic Malformation
Microcystic - Resection
Lymphatic Malformation
Microcystic - Other Treatments

Carbon Dioxide Laser

Radiofrequency Ablation

Bleomycin Injection

Oral Sirolimus

Courtesy Reza Rahbar, MD

Courtesy Cameron Trenor, MD
Lymphatic Malformation
Primary Lymphedema - Liposuction
Venous Malformation (VM)

- Thin-wall, abnormal smooth muscle
- 90% sporadic/solitary (50% TIE2)
 - Glomuvenous (glomulin)
 - Cutaneomucosal (TIE2)
 - Cerebral cavernous (CCM/KRIT1)
 - VVM (MAP3K3)
- Stagnation
 - Intravascular coagulopathy
 - Phlebothrombosis, pain
- Treatment
 - Compression, aspirin
 - Sclerotherapy
 - Resection

 Typical

 Local | Diffuse | Subcutis

 Typical

 Bockenheimer | Verrucous | GVM

 Subtypes

 BRBNS
Venous Malformation
Sclerotherapy
Venous Malformation
Sclerotherapy + Resection

Pre-Treatment Post-Sclerotherapy Post-Resection

[Images of pre-treatment, post-sclerotherapy, and post-resection stages of venous malformation treatment]
Venous Malformation
Resection Only
Arteriovenous Malformation (AVM)

- Artery abnormally connected to a vein
- No capillary bed (nidus, fistula)
- Treatment: embolization, resection

Schobinger Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Warm, shunt on Doppler</td>
</tr>
<tr>
<td>Stage II</td>
<td>Enlargement, pulsation/thrill/bruit, tortuous veins</td>
</tr>
<tr>
<td>Stage III</td>
<td>Ulceration, bleeding, pain</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Cardiac failure</td>
</tr>
</tbody>
</table>

CM-AVM

PTEN-AVA
Arteriovenous Malformation
Diffuse - Embolization Only
Arteriovenous Malformation (AVM) Embolization + Resection

Local

Regional

Diffuse
Vascular Malformation Overgrowth Syndromes

< 1% of Vascular Anomalies
CLOVES Syndrome

- Congenital lipomatosis, overgrowth, vascular malformations, epidermal nevi, and scoliosis/skeletal/spinal anomalies

- Common features: truncal lipomatous mass, slow-flow vascular malformation (capillary), hand/foot anomalies

- Less common features: paraspinal AVMs, epidermal nevus, Wilms, phlebectasia

- Management
 - MRI spine (lipoma, AVM)
 - Wilms tumor screening
 - Treat symptoms
Klippel-Trenaunay Syndrome

- Capillary-lymphatic-venous malformation + extremity + overgrowth

- Lateral embryonic vein (Servelle)

- Affects tissues below muscle fascia

- Management
 - MRI
 - Leg-length discrepancy
 - Remove lateral vein (DVT/PE)
 - Sclero, resection
Maffucci Syndrome

- Multiple enchondromas + soft tissue vascular malformations
- Sporadic: IDH1 (98%), IDH2 (2%)
- Spindle cell hemangioma (reactive in VM)
- Risk for chondrosarcoma and other tumors
- Management
 - Screening plain radiographs
 - Curettage/resection bone lesions
 - Sclero/resection VMs
Parkes Weber Syndrome

- Diffuse AVM + CM + overgrowth extremity
- RASA1
- MRI
- CHF-embolization
- Leg-length monitoring
Proteus Syndrome

- Rare (~100 cases)
- Sporadic: \textit{AKT1}
- Features
 - Progressive, asymmetric bone overgrowth
 - Cerebriform nevus (palms, soles)
 - Epidermal nevi
 - Vascular malformations
 - Cerebral anomalies
 - 20% mortality (PE, cystic lung, cancer)
- Management based on symptoms
Sturge-Weber Syndrome

- CM in V₁ distribution + ocular anomalies (glaucoma, choroidal anomalies) + leptomeningeal vascular malformations
- Soft tissue/skeletal overgrowth
- Seizures
- Management
 - Brain MRI
 - Ophthalmology consultation
 - Pulse-dye laser
 - Resection overgrown tissues
Emerging Genetic Framework
Causative Mutations for Most Vascular Anomalies Recently Discovered

FAMILIAL (<1%)
- 1994 HHT
- 1996 CMVM
- 1996 PTEN-AVA
- 1999 CCM
- 2000 Lymphedema
- 2003 CM-AVM

SPORADIC (>99%)
- 2009 VM
- 2011 *Proteus*
- 2012 CLOVES
- 2013 CM
- 2014 FIL
- 2015 LM/KTS/FAVA
- 2015 VVM
- 2016 PG
- 2016 CH
- 2016 KHE
- 2017 AVM
- 2017 BRBNS
Genetic Classification of Vascular Anomalies

PROS (PIK3CA Related Overgrowth Spectrum)

<table>
<thead>
<tr>
<th>PIK3CA</th>
<th>GNAQ</th>
<th>GNA11</th>
<th>GNA14</th>
<th>TIE2</th>
<th>MEK1</th>
<th>MEK3</th>
<th>Glomulin</th>
<th>AKT</th>
<th>PTEN</th>
<th>RASA</th>
<th>KRT</th>
<th>ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOVES</td>
<td>CM</td>
<td>CM-VM</td>
<td>AVM</td>
<td>VVM</td>
<td>GVM</td>
<td></td>
<td>Proteus</td>
<td>PTEN-</td>
<td>AVEA</td>
<td>CM-AVM</td>
<td>CCM</td>
<td>HHT</td>
</tr>
<tr>
<td>KTS</td>
<td>CH</td>
<td>BRB-NS</td>
<td></td>
</tr>
<tr>
<td>FIL</td>
<td>KHE</td>
<td>VM</td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>PG</td>
<td></td>
</tr>
<tr>
<td>FVA</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td></td>
</tr>
</tbody>
</table>
Case Examples
Diagnostic Algorithm By History

Present At Birth?

Yes

Tumor
- Congenital Hemangioma
- Kaposiform Hemangioendothelioma

Malformation
- Capillary Lymphatic
 - Venous
 - Arteriovenous

No

Infantile Hemangioma
Pyogenic Granuloma
Diagnosis Algorithm by Physical Exam

Hand-Held Doppler

Blood Flow?

Fast-Flow

Tumor
- Infantile Hemangioma
- Congenital Hemangioma
- Kaposiform Hemangioendothelioma

Malformation
- Arteriovenous

Slow-Flow

Capillary Malformation
- Lymphatic Malformation
- Venous Malformation
14 y/o with a 3 month history of a trunk lesion
14 y/o with a lesion of the lip since birth
3 m/o with a forehead lesion since age 2 weeks
15 y/o with an anterior trunk lesion since birth
Summary

<table>
<thead>
<tr>
<th>Biological Name</th>
<th>Incorrect Term</th>
<th>Treatment</th>
<th>Biological Name</th>
<th>Incorrect Term</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile Hemangioma</td>
<td>“Strawberry hemangioma” “Capillary hemangioma” “Cavernous hemangioma”</td>
<td>Observe Injection Propranolol Prednisone Timolol Resect</td>
<td>Capillary Malformation</td>
<td>“Port-wine stain” “Capillary hemangioma”</td>
<td>Observe Laser Resect</td>
</tr>
<tr>
<td>Congenital Hemangioma</td>
<td>“Infantile hemangioma”</td>
<td>Observe Resect</td>
<td>Lymphatic Malformation</td>
<td>“Cystic hyroma” “Lymphangioma”</td>
<td>Observe Sclero CO₂ Laser RFA Resect Sirolimus</td>
</tr>
<tr>
<td>Kaposiform Hemangioendothelioma</td>
<td>“Capillary hemangioma”</td>
<td>Sirolimus Vincristine</td>
<td>Venous Malformation</td>
<td>“Cavernous hemangioma”</td>
<td>Observe Sclero Resect</td>
</tr>
<tr>
<td>Pyogenic Granuloma</td>
<td>“Hemangioma”</td>
<td>Cauterize Resect</td>
<td>Arteriovenous Malformation</td>
<td>“Arteriovenous hemangioma”</td>
<td>Observe Embolize Resect</td>
</tr>
</tbody>
</table>
Conclusions-Learning Objectives

- Comprehend biological classification and terminology
- Accurately diagnose major types of vascular anomalies
- Understand basic management